品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
科学家利用Plantarray和高光谱双表型系统连续监测莴苣的氮和水分含量
发表时间:2022-01-17 13:49:44点击:811
来源:北京博普特科技有限公司
分享:
来自以色列的科学家利用Plantarray功能表型生理和高光谱成像双表型系统发表了题为Continuous seasonal monitoring of nitrogen and water content in lettuce (Lactuca sativa) using a dual phenomics system的文章,文章表于知名期刊Journal of Experimental Botany, erab561,https://doi.org/10.1093/jxb/erab561。
此前用该系统发表了一篇文章PlantArray系统结合高光谱:测定日蒸腾速率和日反射率。此前文章介绍了一种用于监测植物对非生物变化动态响应的新型高光谱生理系统。该系统将PlantArray(PA)3.0与一个定制的推扫式光谱成像系统相结合,在植物上方移动,以高光谱和高空间分辨同时成像实验阵列中的几十种植物。PA 3.0是一个完整的植物生理测量系统,因此采集的数据是通过平均植物光谱信号及其相应的生理响应进行分析的。就已发表的文献而言,这是首次尝试使用移动的高光谱相机、自然光和静态植物(由生理测量系统(PA)连续监测)进行多个日间温室测量。直接测量的性状包括整个白天的瞬时蒸腾速率和每日蒸腾速率,以及每日和定期的植物减重和增重。该系统监测和评估了辣椒植株对不同水平钾肥的反应,文章链接www.bio-equip.com/showarticle.asp?id=453119406。
图2 成像平台在植株上方移动时的视图。该平台由轻质材料制成
图3 温室里生长台上72株辣椒的RGB图像。相机从右向左移动
摘要
逐株收集和分析大量信息有助于精确施肥的发展,可以通过将遥感技术与高通量表型方法相结合来实现。在这里,莴苣植物(莴苣)在从幼苗到收获的最佳和次最佳氮和灌溉处理条件下生长。在整个实验过程中,使用Plantarray系统计算和记录重量、每日蒸腾和瞬时蒸腾速率。从种植后15天到实验结束,使用高光谱移动相机每小时(0900–1400小时)对整个植物阵列进行成像。根据植物的反射信号计算了三个植被指数:红边叶绿素指数(RECI)、光化学反射指数(PRI)和水分指数(WI),并对组合处理、生理测量和植被指数进行了比较。从成像的第一天开始,氮处理之间的RECI值存在显著差异,在检测到日蒸腾速率的显著差异之前,WI值可将充分灌溉与干旱处理组区分开来。在干旱处理阶段每小时计算的PRI随瞬时蒸腾速率而变化。因此,高光谱成像技术可以用于种植设施,在植物的生理反应损害产量之前检测植物体内的氮或水短缺。
关键词
叶绿素指数,高光谱,物候组学,PRI,反射率,蒸腾作用
Continuous seasonal monitoring of nitrogen and water content in lettuce (Lactuca sativa) using a dual phenomics system
Abstract
The collection and analysis of large amounts of information on a plant-by-plant basis contributes to the development of precision fertigation and may be achieved by combining remote-sensing technology with high-throughput phenotyping methods. Here, lettuce plants (Lactuca sativa) were grown under optimal and suboptimal nitrogen and irrigation treatments from seedlings to harvest. A Plantarray system was used to calculate and log weights, daily transpiration and momentary transpiration rates throughout the experiment. From 15 days after planting until experiment termination, the entire array of plants was imaged hourly (0900–1400 h) using a hyperspectral moving camera. Three vegetation indices were calculated from the plants' reflectance signal: red-edge chlorophyll index (RECI), photochemical reflectance index (PRI), and water index (WI), and combined treatments, physiological measurements, and vegetation indices were compared. RECI values differed significantly between nitrogen treatments from the first day of imaging, and WI values distinguished well-irrigated from drought-treatment groups before detecting significant differences in daily transpiration rate. The PRI, calculated hourly during the drought-treatment phase, changed with the momentary transpiration rate. Thus, hyperspectral imaging might be used in growing facilities to detect nitrogen or water shortages in plants before their physiological response damages yields.
Key words
chlorophyll index, hyperspectral, phenomics, PRI, reflectance, transpiration