欢迎您来到博普特科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

利用法国Hiphen设备发表的部分文章

发表时间:2023-07-28 14:53:12点击:562

来源:北京博普特科技有限公司

分享:

1、Monitoring forest phenology and leaf area index with the autonomous, low-cost transmittance sensor PASTiS-57

2、MACA: A relative radiometric correction method for multiflight unmanned aerial vehicle images based on concurrent satellite imagery

3、Did the Global Wheat Head Challenges solve wheat head counting?

4、Using uav borne, multi-spectral imaging for the field phenotyping of shoot biomass, leaf area index and height of West African sorghum varieties under two contrasted 

5、Grain yield prediction using multi-temporal UAV-based multispectral vegetation indices and endmember abundance in rice

6、A high-throughput model-assisted method for phenotyping maize green leaf area index dynamics using unmanned aerial vehicle imagery

7、High-throughput phenotyping of plant height: comparing unmanned aerial vehicles and ground LiDAR estimates

8、Small Agricultural Phenotype Robot and Its Navigation and Obstacle Avoidance in Parallel Walls

9、Robotized indoor phenotyping allows genomic prediction of adaptive traits in the field

10、Toward a regional field phenotyping network in West Africa

11、A high-throughput model-assisted method for phenotyping maize green leaf area index dynamics using unmanned aerial vehicle imagery

12、Global wheat head dataset 2021: more diversity to improve the benchmarking of wheat head localization methods 

13、Deep learning for interpreting images of crops acquired under field conditions

14、Agro-physiological responses of 10 west Africa sorghum varieties to early water deficit assessed by UAV and ground phenotyping

15、Estimation of crop key traits from multi-source remote sensing technologies

16、Déploiement de la plateforme de traitement des données phénotypage haut débit 4P sur l'infrastructure France Grilles.

17、Leaf-rolling in maize crops: from leaf scoring to canopy-level measurements for phenotyping

18、An automatic method based on daily in situ images and deep learning to date wheat heading stage

19、Reaching Stage 4 of Vegetation Product Validation by Exploiting the Synergy Between UAV, HR Satellites and IoT Measurements

20、 Global wheat head detection challenges: winning models and application for head counting

21、Estimation of leaf traits from reflectance measurements: Comparison between methods based on vegetation indices and several versions of the PROSPECT

22、Genomic prediction of green fraction dynamics in soybean using UAV observations.

23、Estimating Straw Cereal Plant Density at Early Stages Using Reflectance Based and Image Segmentation Based Methods Under Different Spatial Resolutions

24、Estimation of crop key traits from multi-source remote sensing technologies

25、High-Precision Wheat Head Detection Model Based on One-Stage Network and GAN Model

26、Do multispectral and thermal IR high-resolution UAS-borne imagery help in phenotyping the tree response to water stress at field? Case studies in apple diversity 

27、Seasonal monitoring of FAPAR over the Barrax cropland site in Spain, in support of the validation of PROBA-V products at 333 m.

28、Effects of ethionine on digestive enzyme synthesis and discharge by mouse pancreas

29、Impact of the reproductive organs on crop BRDF as observed from a UAV

30、Assimilation of Multisensor Optical and Multiorbital SAR Satellite Data in a Simplified Agrometeorological Model for Rapeseed Crops Monitoring

31、How far does the tree affect the crop in agroforestry? New spatial analysis methods in a Faidherbia parkland 

32、Dynamics of wheat organs by close-range multimodal machine vision

33、Phenotyping wheat structural traits from millimetric resolution RGB imagery in field conditions

34、Wheat Head Detection using YOLO: A Comparative Study

35、Approche multi-critère pour la caractérisation des adventices

36、Gestion avancée de la mobilité dans les réseaux maillés sans fil

37、Estimates of maize plant density from UAV RGB images using Faster-RCNN detection model: impact of the spatial resolution

38、Sugar beet: A competitive innovation

39、Estimating leaf nitrogen and chlorophyll content in wheat by correcting canopy structure effect through multi-angular remote sensing

40、Global Wheat Challenge 2020: Analysis of the competition design and winning models

41、Retrieving leaf and canopy characteristics from their radiative properties using physically based models: from laboratory to satellite observations

42、Identification des déterminants génétiques de la tolérance à la sècheresse chez le maïs par l'étude de l'évolution de l'indice foliaire vert au cours du cycle de la plante …

43、A double swath configuration for improving throughput and accuracy of trait estimate from UAV images

44、Evaluation of multiorbital SAR and multisensor optical data for empirical estimation of rapeseed biophysical parameters

45、Suivi non destructif de l'indice de nutrition azotée par proxi-et télédétection en vue d'un pilotage dynamique et spatialisé de la fertilisation azotée du blé tendre

46、 Digital technology and agroecology: opportunities to explore, challenges to overcome

47、Estimating crop yields at the field level using Landsat and MODIS products. 

48、VegAnn, Vegetation Annotation of multi-crop RGB images acquired under diverse conditions for segmentation

49、Use of thermographic sensors to determine the water status of plants in a controlled environment

50、Multi-scale high-throughput phenotyping of apple architectural and functional traits in orchard reveals genotypic variability under contrasted watering regimes

51、Research Article Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution.

52、Exploiting the centimeter resolution of UAV multispectral imagery to improve remote-sensing estimates of canopy structure and biochemistry in sugar beet crops

53、Deep learning algorithms for high-throughput cereal plant and organ identification

54、Revisit the performance of MODIS and VIIRS leaf area index products from the perspective of time-series stability 

55、Genomic prediction of green fraction dynamics in soybean using unmanned aerial vehicles observations

56、Deep learning algorithms for high-throughput cereal plant and organ identification

57、High-throughput phenotyping of fruit tree development, light interception and wateruse related traits: a case study on apple tree

58、Two-step multi-spectral registration via key-point detector and gradient similarity. Application to agronomic scenes for proxy-sensing

59、Continuous estimation of canopy leaf area index (LAI) and clumping index over broadleaf crop fields: An investigation of the PASTIS-57 instrument and smartphone …

60、Plant detection and counting from high-resolution RGB images acquired from UAVs: comparison between deep-learning and handcrafted methods with application to …

61、Scoring cercospora leaf spot on sugar beet: Comparison of UGV and UAV phenotyping systems

62、Combining UAV multispectral imagery and ecological factors to estimate leaf nitrogen and grain protein content of wheat

63、Validation of PROBA-V GEOV1 and MODIS C5 & C6 FAPAR products in a deciduous beech forest site in Italy

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报