欢迎您来到博普特科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

Plant Phenomics |《植物表型组学》2021-2022年文章导读

发表时间:2023-03-31 08:38:21点击:933

来源:植物表型组学

分享:

1680222839597352.png

点击此处下载PDF便携式版本

如何将Plant Phenomics的文章导入自己的文献管理软件?

第一步:点击标题右下方使用引文图标
1680222925385109.png
第二步:根据自己使用的文献管理软件选择之后,导入文章。目前支持RIS(ProCite,Reference Manager)、EndNote、BibTex、Medlars、RefWorks软件的导入。
1680222942775065.png

2021-2022年Plant Phenomics文章导读

Multispectral Drone Imagery and SRGAN for Rapid Phenotypic Mapping of Individual Chinese Cabbage Plants

全文链接:https://spj.science.org/doi/10.34133/plantphenomics.0007

微信导读:Plant Phenomics | 基于无人机多光谱图像和SRGAN的大白菜单株表型测定研究


Root System Traits Contribute to Variability and Plasticity in Response to Phosphorus Fertilization in 2 Field-Grown Sorghum [Sorghum bicolor (L.) Moench] Cultivars

全文链接:https://spj.science.org/doi/10.34133/plantphenomics.0002

微信导读:Plant Phenomics | 两个大田高粱品种根系性状对磷肥响应的变异性和可塑性研究


SE-COTR: A Novel Fruit Segmentation Model for Green Apples Application in Complex Orchard

全文链接:https://spj.science.org/doi/10.34133/plantphenomics.0005

微信导读:Plant Phenomics | SE-COTR:针对复杂果园中绿色苹果的果实分割模型


SegVeg: Segmenting RGB Images into Green and Senescent Vegetation by Combining Deep and Shallow Methods

全文链接:https://spj.science.org/doi/10.34133/2022/9803570

微信导读:Plant Phenomics | SegVeg通过深度和浅层方法的结合将RGB图像分割成绿色和衰老植被


Assessing the Storage Root Development of Cassava with a New Analysis Tool

全文链接:https://spj.science.org/doi/10.34133/2022/9767820

微信导读:Plant Phenomics | 评估木薯贮藏根系发育新的分析工具


Deep Learning for Strawberry Canopy Delineation and Biomass Prediction from High-Resolution Images

全文链接:https://spj.science.org/doi/10.34133/2022/9850486

基于高分辨率图像的草莓冠层描绘和生物量预测的深度学习


BFP Net: Balanced Feature Pyramid Network for Small Apple Detection in Complex Orchard Environment

全文链接:https://spj.science.org/doi/10.34133/2022/9892464

微信导读:Plant Phenomics | 基于可平衡特征金字塔网络的小苹果检测模型


EasyDAM_V2: Efficient Data Labeling Method for Multishape, Cross-Species Fruit Detection

全文链接:https://spj.science.org/doi/10.34133/2022/9761674

微信导读:Plant Phenomics | EasyDAM_V2,零数据标注实现果实识别模型构建


Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits

全文链接:https://spj.science.org/doi/10.34133/2022/9802585

微信导读:Plant Phenomics | 基于无人机多传感器和集成学习的玉米表型高通量估算


Spectral Preprocessing Combined with Deep Transfer Learning to Evaluate Chlorophyll Content in Cotton Leaves

全文链接:https://spj.science.org/doi/10.34133/2022/9813841

微信导读:Plant Phenomics | 光谱预处理与深度转移学习相结合的叶片叶绿素含量评估


End-to-End Fusion of Hyperspectral and Chlorophyll Fluorescence Imaging to Identify Rice Stresses

全文链接:https://spj.science.org/doi/10.34133/2022/9851096

高光谱和叶绿素荧光成像的端到端融合识别水稻胁迫


3dCAP-Wheat: An Open-Source Comprehensive Computational Framework Precisely Quantifies Wheat Foliar, Nonfoliar, and Canopy Photosynthesis

全文链接:https://spj.science.org/doi/10.34133/2022/9758148

微信导读:Plant Phenomics | 基于整合叶片与非叶片组织光合作用的三维冠层模型精确刻画小麦群体光合


Shortwave Radiation Calculation for Forest Plots Using Airborne LiDAR Data and Computer Graphics

全文链接:https://spj.science.org/doi/10.34133/2022/9856739

微信导读:Plant Phenomics | 基于机载LiDAR数据和计算机图形学的林分短波辐射计算


Unsupervised Plot-Scale LAI Phenotyping via UAV-Based Imaging, Modelling, and Machine Learning

全文链接:https://spj.science.org/doi/10.34133/2022/9768253

微信导读:Plant Phenomics | 基于无人机成像实现对田间小麦叶面积指数的快速精准估计


A Review of High-Throughput Field Phenotyping Systems: Focusing on Ground Robots

全文链接:https://spj.science.org/doi/10.34133/2022/9760269

高通量田间表型系统综述:重点关注地面机器人


Moxa Wool in Different Purities and Different Growing Years Measured by Terahertz Spectroscopy

全文链接:https://spj.science.org/doi/10.34133/2022/9815143

微信导读:Plant Phenomics | 太赫兹光谱技术可以精确区分艾绒纯度和生长年限


Development and Validation of a Deep Learning Based Automated Minirhizotron Image Analysis Pipeline

全文链接:https://spj.science.org/doi/10.34133/2022/9758532

微信导读:Plant Phenomics | 基于深度学习的微根管图像自动化分析方法


PSegNet: Simultaneous Semantic and Instance Segmentation for Point Clouds of Plants

全文链接:https://spj.science.org/doi/10.34133/2022/9787643

微信导读:Plant Phenomics | PSegNet:针对多品种作物点云的器官同步语义分割与实例分割深度学习网络


Robust High-Throughput Phenotyping with Deep Segmentation Enabled by a Web-Based Annotator

全文链接:https://spj.science.org/doi/10.34133/2022/9893639

基于网络标注器的深度分割技术支持的鲁棒高通量表型分析


Evaluation of Postharvest Senescence of Broccoli via Hyperspectral Imaging

全文链接:https://spj.science.org/doi/10.34133/2022/9761095

通过高光谱成像评价西兰花采后衰老


Enabling Breeding Selection for Biomass in Slash Pine Using UAV-Based Imaging

全文链接:https://spj.science.org/doi/10.34133/2022/9783785

微信导读:Plant Phenomics | 无人机成像技术助力湿地松生物量遗传选择育种


Estimating Photosynthetic Attributes from High-Throughput Canopy Hyperspectral Sensing in Sorghum

全文链接:https://spj.science.org/doi/10.34133/2022/9768502

微信导读:Plant Phenomics | 利用高通量冠层高光谱遥感预测高粱的光合参数


Objective Phenotyping of Root System Architecture Using Image Augmentation and Machine Learning in Alfalfa (Medicago sativa L.)

全文链接:https://spj.science.org/doi/10.34133/2022/9879610

微信导读:Plant Phenomics | 基于图像增强和机器学习的苜蓿根系表型研究


Prediction of the Maturity of Greenhouse Grapes Based on Imaging Technology

全文链接:https://spj.science.org/doi/10.34133/2022/9753427

微信导读:Plant Phenomics | 基于表型图像信息与反向神经网络预测温室葡萄成熟度


Simultaneous Prediction of Wheat Yield and Grain Protein Content Using Multitask Deep Learning from Time-Series Proximal Sensing

全文链接:https://spj.science.org/doi/10.34133/2022/9757948

微信导读:Plant Phenomics | 基于近端多源时序数据和多任务深度学习同步预测小麦产量和品质性状


How Useful Is Image-Based Active Learning for Plant Organ Segmentation?

全文链接:https://spj.science.org/doi/10.34133/2022/9795275

基于图像的主动学习对植物器官分割有多大用处?


Dynamic Color Transform Networks for Wheat Head Detection

全文链接:https://spj.science.org/doi/10.34133/2022/9818452

微信导读:Plant Phenomics | 华中科技大学曹治国教授提出用于麦穗检测的动态颜色变换网络


Wheat Ear Segmentation Based on a Multisensor System and Superpixel Classification

全文链接:https://spj.science.org/doi/10.34133/2022/9841985

微信导读:Plant Phenomics | 基于多传感器系统和超像素分类的麦穗图像分割


Spectrometric Prediction of Nitrogen Content in Different Tissues of Slash Pine Trees

全文链接:https://spj.science.org/doi/10.34133/2022/9892728

微信导读:Plant Phenomics | 氮肥都去哪儿了?湿地松不同部位氮元素含量差异及其光谱预测方法


Panicle-3D: Efficient Phenotyping Tool for Precise Semantic Segmentation of Rice Panicle Point Cloud

全文链接:https://spj.science.org/doi/10.34133/2021/9838929

微信导读:Plant Phenomics | Panicle-3D:水稻穗点云精确语义分割的高效表型工具


Automatic Microplot Localization Using UAV Images and a Hierarchical Image-Based Optimization Method

全文链接:https://spj.science.org/doi/10.34133/2021/9764514

使用无人机图像的自动微图定位和基于分层图像的优化方法


A Double Swath Configuration for Improving Throughput and Accuracy of Trait Estimate from UAV Images

全文链接:https://spj.science.org/doi/10.34133/2021/9892647

微信导读:Plant Phenomics | “双眼”胜于“单眼”:精准农业的创新战略


Complementary Phenotyping of Maize Root System Architecture by Root Pulling Force and X-Ray Imaging

全文链接:https://spj.science.org/doi/10.34133/2021/9859254

微信导读:Plant Phenomics | 基于根提拉力和X射线成像的玉米根系结构表型研究


GANana: Unsupervised Domain Adaptation for Volumetric Regression of Fruit

全文链接:https://spj.science.org/doi/10.34133/2021/9874597

微信导读:Plant Phenomics | GANana:用于水果三维重建的无监督域自适应体积回归算法


Detecting Sorghum Plant and Head Features from Multispectral UAV Imagery

全文链接:https://spj.science.org/doi/10.34133/2021/9874650

从多光谱无人机图像中检测高粱植株和穗的特征


Global Wheat Head Detection 2021: An Improved Dataset for Benchmarking Wheat Head Detection Methods

全文链接:https://spj.science.org/doi/10.34133/2021/9846158

微信导读:Plant Phenomics | GWHD_2021:改进后的全球麦穗检测数据集


Exploring Seasonal and Circadian Rhythms in Structural Traits of Field Maize from LiDAR Time Series

全文链接:https://spj.science.org/doi/10.34133/2021/9895241

微信导读:Plant Phenomics | 作物是否会睡觉?时间序列激光雷达量化玉米生育期和昼夜节律表型


Field Phenomics: Will It Enable Crop Improvement?

全文链接:https://spj.science.org/doi/10.34133/2021/9871989

田间表型组学:它能促进作物改良吗?


Estimates of Maize Plant Density from UAV RGB Images Using Faster-RCNN Detection Model: Impact of the Spatial Resolution

全文链接:https://spj.science.org/doi/10.34133/2021/9824843

使用 Faster-RCNN 检测模型从无人机 RGB 图像估计玉米植株密度:空间分辨率的影响


Classification of Soybean Pubescence from Multispectral Aerial Imagery

全文链接:https://spj.science.org/doi/10.34133/2021/9806201

微信导读:Plant Phenomics | 基于多光谱航拍图像对大豆茸毛进行分类


KAT4IA: KK-Means Assisted Training for Image Analysis of Field-Grown Plant Phenotypes

全文链接:https://spj.science.org/doi/10.34133/2021/9805489

KAT4IA:用于田间植物表型图像分析的 K-Means 辅助训练


Using Machine Learning to Develop a Fully Automated Soybean Nodule Acquisition Pipeline (SNAP)

全文链接:https://spj.science.org/doi/10.34133/2021/9834746

微信导读:Plant Phenomics | SNAP:基于机器学习的全自动大豆根瘤提取算法


High-Throughput Corn Image Segmentation and Trait Extraction Using Chlorophyll Fluorescence Images

全文链接:https://spj.science.org/doi/10.34133/2021/9792582

微信导读:Plant Phenomics | 基于叶绿素荧光图像的高通量玉米图像分割和性状提取


Qualification of Soybean Responses to Flooding Stress Using UAV-Based Imagery and Deep Learning

全文链接:https://spj.science.org/doi/10.34133/2021/9892570

微信导读:Plant Phenomics | 基于无人机图像和深度学习鉴定大豆对水涝胁迫的响应


Deep Multiview Image Fusion for Soybean Yield Estimation in Breeding Applications

全文链接:https://spj.science.org/doi/10.34133/2021/9846470

微信导读:Plant Phenomics | 深度融合多角度图像以预估育种应用中的大豆产量


UAS-Based Plant Phenotyping for Research and Breeding Applications

全文链接:https://spj.science.org/doi/10.34133/2021/9840192 

微信导读:Plant Phenomics 综述 | 基于无人驾驶航空器系统的植物表型分析


Impact of Varying Light and Dew on Ground Cover Estimates from Active NDVI, RGB, and LiDAR

全文链接:https://spj.science.org/doi/10.34133/2021/9842178

微信导读:Plant Phenomics | 在不同光线和露水情况下评估用传感器估算冠层覆盖度的可靠性


Enhanced Field-Based Detection of Potato Blight in Complex Backgrounds Using Deep Learning

全文链接:https://spj.science.org/doi/10.34133/2021/9835724

使用深度学习在复杂背景下增强基于田间马铃薯枯萎病检测


Automatic Fruit Morphology Phenome and Genetic Analysis: An Application in the Octoploid Strawberry

全文链接:https://spj.science.org/doi/10.34133/2021/9812910

微信导读:Plant Phenomics | 对八倍体草莓形态的自动化表型和遗传分析


The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines

全文链接:https://spj.science.org/doi/10.34133/2021/9890745

微信导读:Plant Phenomics | 无人机高光谱影像在玉米自交系作物性状估算中的应用


An Integrated Method for Tracking and Monitoring Stomata Dynamics from Microscope Videos

全文链接:https://spj.science.org/doi/10.34133/2021/9835961

微信导读:Plant Phenomics | 南京农大提出了一种从显微镜视频中跟踪和监测气孔动态的集成方法


Robust Surface Reconstruction of Plant Leaves from 3D Point Clouds

全文链接:https://spj.science.org/doi/10.34133/2021/3184185

微信导读:Plant Phenomics | 基于植物叶片三维点云的稳健表面重建


Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature

全文链接:https://spj.science.org/doi/10.34133/2021/9765952

微信导读:Plant Phenomics | 结合无人机高光谱图像和倒伏特征构建水稻产量类别检测模型


Detection of the Progression of Anthesis in Field-Grown Maize Tassels: A Case Study

全文链接:https://spj.science.org/doi/10.34133/2021/4238701

微信导读:Plant Phenomics | 田间条件下检测玉米雄穗的开花进程


A Comparative Analysis of Quantitative Metrics of Root Architecture

全文链接:https://spj.science.org/doi/10.34133/2021/6953197

微信导读:Plant Phenomics | 对根系结构量化指标的比较分析


Semiautomated 3D Root Segmentation and Evaluation Based on X-Ray CT Imagery

全文链接:https://spj.science.org/doi/10.34133/2021/8747930

微信导读:Plant Phenomics | 基于X射线CT图像的半自动3D根系分割与评价方法


Photosynthetic Phenomics of Field- and Greenhouse-Grown Amaranths vs. Sensory and Species Delimits

全文链接:https://spj.science.org/doi/10.34133/2021/2539380

微信导读:Plant Phenomics | 对大田和温室栽培苋菜的光合表型、感官和品种界限的分析


Phenotyping Tomato Root Developmental Plasticity in Response to Salinity in Soil Rhizotrons

全文链接:https://spj.science.org/doi/10.34133/2021/2760532

微信导读:Plant Phenomics | 表型分析番茄根系发育可塑性对土壤盐分胁迫的响应


Terahertz Spectroscopy for Accurate Identification of Panax quinquefolium Basing on Nonconjugated 24(R)-Pseudoginsenoside F11

全文链接:https://spj.science.org/doi/10.34133/2021/6793457

微信导读:Plant Phenomics | 上海理工大学庄松林院士团队开发了一种基于西洋参标志物F11的无损快速分析方法

加入作者交流群
扫码添加小编微信,拉您进入《植物表型组学》作者交流群,群内不定期开展作者分享会、专刊发布会等高质量活动。

1675328342620488.png

添加小编微信,备注姓名+单位+PP,加入作者交流群
About Plant Phenomics

《植物表型组学》(Plant Phenomics)是由南京农业大学和美国科学促进会(AAAS)合作创办的英文学术期刊,于2019年1月正式上线发行。采用开放获取形式,刊载植物表型组学交叉学科热点领域具有突破性科研进展的原创性研究论文、综述、数据集和观点。具体范围涵盖高通量表型分析的最新技术,基于图像分析和机器学习的表型分析研究,提取表型信息的新算法,作物栽培、植物育种和农业实践中的表型组学新应用,与植物表型相结合的分子生物学、植物生理学、统计学、作物模型和其他组学研究,表型组学相关的植物生物学等。期刊已被DOAJ、Scopus、PMC、EI和SCIE等数据库收录。科睿唯安JCR2021影响因子为6.961,位于农艺学、植物科学、遥感一区。中科院农艺学、植物科学一区,遥感二区,生物大类一区(TOP期刊)。2020年入选中国科技期刊卓越行动计划高起点新刊项目。

说明:本文由《植物表型组学》编辑部负责组稿。

中文内容仅供参考,一切内容以英文原版为准。
排版:王慧敏(南京农业大学)

审核:孔敏、王平

  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报