品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
多光谱食品品质分析:利用基于光谱学、成像分析和模拟人类感官的传感器技术快速评估食用海藻的微生物质量
发表时间:2022-09-26 08:24:47点击:808
来源:北京博普特科技有限公司
分享:
摘要
海藻养殖业的扩张以及这些产品的快速腐败,使得实施快速、实时的质量评估技术变得更加重要。原产于苏格兰和爱尔兰的海藻样本在不同温度条件下储存特定时间间隔。在整个储存过程中进行微生物分析以评估总活菌数(TVC),同时进行平行的FT-IR光谱、多光谱成像(MSI)和电子鼻(e-nose)分析。机器学习模型(偏最小二乘回归(PLS-R))用于评估传感器和微生物数据之间的任何相关性。微生物计数在1.8至9.5 log CFU/g之间,而微生物生长速度受产地、收获年份和储存温度的影响。使用FT-IR数据开发的模型在外部测试数据集上显示出良好的预测性能。通过合并来自两个来源的数据开发的模型产生了令人满意的预测性能,显示出更强的稳健性,因为对微生物种群预测不了解来源。使用MSI数据开发的模型结果表明,尽管RMSE值较高,但在外部测试数据集上的预测性能相对较好,而在使用MI和SAMS的电子鼻数据时,报告的模型预测性能较差。
关键词:海藻;腐败;红外光谱;多光谱成像;电子鼻;机器学习
Rapid Assessment of Microbial Quality in Edible Seaweeds Using Sensor Techniques Based on Spectroscopy, Imaging Analysis and Sensors Mimicking Human Senses
Sensors 2022, 22(18), 7018; https://doi.org/10.3390/s22187018
Abstract
The expansion of the seaweed aquaculture sector along with the rapid deterioration of these products escalates the importance of implementing rapid, real-time techniques for their quality assessment. Seaweed samples originating from Scotland and Ireland were stored under various temperature conditions for specific time intervals. Microbiological analysis was performed throughout storage to assess the total viable counts (TVC), while in parallel FT-IR spectroscopy, multispectral imaging (MSI) and electronic nose (e-nose) analyses were conducted. Machine learning models (partial least square regression (PLS-R)) were developed to assess any correlations between sensor and microbiological data. Microbial counts ranged from 1.8 to 9.5 log CFU/g, while the microbial growth rate was affected by origin, harvest year and storage temperature. The models developed using FT-IR data indicated a good prediction performance on the external test dataset. The model developed by combining data from both origins resulted in satisfactory prediction performance, exhibiting enhanced robustness from being origin unaware towards microbiological population prediction. The results of the model developed with the MSI data indicated a relatively good prediction performance on the external test dataset in spite of the high RMSE values, whereas while using e-nose data from both MI and SAMS, a poor prediction performance of the model was reported. View Full-Text
Keywords: marine algae; spoilage; FT-IR; multispectral imaging; e-nose; machine learning
相关阅读
丹麦VideometerSLS/SGT颗粒/粘度/口感评价测量仪
食品品质光谱成像可视化:光谱成像应用于面食小麦籽粒真伪检测的可行性研究
食品品质光谱成像可视化:多光谱成像 (MSI):一种检测掺有马肉的碎牛肉的有前景的方法
食品品质光谱成像可视化:色度计和多光谱图像的肉类颜色测量结果的比较
食品品质光谱成像可视化:利用多光谱成像进行非侵入性污染评估和肉类样品绘图
食品品质光谱成像可视化:使用多光谱成像分析快速无损识别注水牛肉样品
食品品质光谱成像可视化:具有不同亚硝酸盐和硝酸盐还原酶活性的肉相关葡萄球菌在发酵香肠中的颜色形成
食品品质光谱可视化研究:长时间低温热处理的奶牛和公牛的肉韧性与结缔组织特性的关系
食品品质光谱成像可视化:使用 vis/NIR 多光谱成像对微加工苹果的每日新鲜度衰减:初步测试
食品品质光谱成像可视化:多光谱视觉系统与色度计在肉色评估中的比较
食品品质光谱可视化研究:使用光谱成像和三色测量对鲑鱼虾青素颜色进行分类
食品品质光谱可视化研究:长时间低温热处理的奶牛和公牛的肉韧性与结缔组织特性的关系
食品品质光谱可视化研究:高通量多光谱图像处理在食品科学中的应用
食品品质光谱可视化研究:一种基于多光谱图像的肉类腐败检测智能决策支持系统
食品品质光谱可视化研究:多光谱成像在草莓果实品质属性和成熟期测定中的应用