品质至上,客户至上,您的满意就是我们的目标
技术文章
当前位置: 首页 > 技术文章
多光谱食品品质无损检测:用于快速评估鸡肉汉堡微生物质量的光谱数据
发表时间:2022-09-02 09:43:24点击:874
来源:北京博普特科技有限公司
分享:
用于快速评估鸡肉汉堡微生物质量的光谱数据
摘要
快速评估高易腐食品的微生物质量非常重要。光谱数据结合机器学习方法近年来得到了广泛的研究,因为它们具有快速、无损、生态友好的特性,并且具有嵌入、在线或旁线使用的潜力。在本研究中,使用傅里叶变换红外光谱(FTIR)和多光谱成像(MSI)结合机器学习算法对鸡肉汉堡的微生物质量进行了评估。从食品行业购买了六个独立批次,并在0、4和8°C下储存。定期(特别是每24小时)对重复样品进行微生物分析、FTIR测量和MSI取样。在数据收集过程中采集的样本(n=274)被分为三个微生物质量组:“满意”:4-7 log CFU/g,“可接受”:7-8 log CFU/g,“不可接受”:>8 log CFU/g。随后,使用几种机器学习方法训练和测试分类模型(外部验证),即偏最小二乘判别分析(PLSDA)、支持向量机(SVM)、随机森林(RF)、逻辑回归(LR)和顺序逻辑回归(OLR)。外部验证的准确度得分显示FTIR数据值在79.41–89.71%范围内,MSI数据的准确度分数在74.63–85.07%范围内。这些模型的性能在鸡肉汉堡的微生物质量评估方面显示了优势。
关键词:鸡肉汉堡,傅里叶变换红外光谱,多光谱成像,机器学习
Foods.2022 Aug; 11(16): 2386.
22 Aug 9.doi:10.3390/foods11162386
Spectroscopic Data for the Rapid Assessment of Microbiological Quality of Chicken Burgers
Abstract
The rapid assessment of the microbiological quality of highly perishable food commodities is of great importance. Spectroscopic data coupled with machine learning methods have been investigated intensively in recent years, because of their rapid, non-destructive, eco-friendly qualities and their potential to be used on-, in- or at-line. In the present study, the microbiological quality of chicken burgers was evaluated using Fourier transform infrared (FTIR) spectroscopy and multispectral imaging (MSI) in tandem with machine learning algorithms. Six independent batches were purchased from a food industry and stored at 0, 4, and 8 °C. At regular time intervals (specifically every 24 h), duplicate samples were subjected to microbiological analysis, FTIR measurements, and MSI sampling. The samples (n = 274) acquired during the data collection were classified into three microbiological quality groups: “satisfactory”: 4–7 log CFU/g, “acceptable”: 7–8 log CFU/g, and “unacceptable”: >8 logCFU/g. Subsequently, classification models were trained and tested (external validation) with several machine learning approaches, namely partial least squares discriminant analysis (PLSDA), support vector machine (SVM), random forest (RF), logistic regression (LR), and ordinal logistic regression (OLR). Accuracy scores were attained for the external validation, exhibiting FTIR data values in the range of 79.41–89.71%, and, for the MSI data, in the range of 74.63–85.07%. The performance of the models showed merit in terms of the microbiological quality assessment of chicken burgers.
Keywords: chicken burgers, Fourier transform infrared (FTIR) spectroscopy, multispectral imaging (MSI), machine learning
相关阅读
丹麦VideometerSLS/SGT颗粒/粘度/口感评价测量仪
食品品质光谱成像可视化:光谱成像应用于面食小麦籽粒真伪检测的可行性研究
食品品质光谱成像可视化:多光谱成像 (MSI):一种检测掺有马肉的碎牛肉的有前景的方法
食品品质光谱成像可视化:色度计和多光谱图像的肉类颜色测量结果的比较
食品品质光谱成像可视化:利用多光谱成像进行非侵入性污染评估和肉类样品绘图
食品品质光谱成像可视化:使用多光谱成像分析快速无损识别注水牛肉样品
食品品质光谱成像可视化:具有不同亚硝酸盐和硝酸盐还原酶活性的肉相关葡萄球菌在发酵香肠中的颜色形成
食品品质光谱可视化研究:长时间低温热处理的奶牛和公牛的肉韧性与结缔组织特性的关系
食品品质光谱成像可视化:使用 vis/NIR 多光谱成像对微加工苹果的每日新鲜度衰减:初步测试
食品品质光谱成像可视化:多光谱视觉系统与色度计在肉色评估中的比较
食品品质光谱可视化研究:使用光谱成像和三色测量对鲑鱼虾青素颜色进行分类
食品品质光谱可视化研究:长时间低温热处理的奶牛和公牛的肉韧性与结缔组织特性的关系
食品品质光谱可视化研究:高通量多光谱图像处理在食品科学中的应用
食品品质光谱可视化研究:一种基于多光谱图像的肉类腐败检测智能决策支持系统