欢迎您来到博普特科技官方网站!

土壤仪器电话

010-82794912

品质至上,客户至上,您的满意就是我们的目标

技术文章

当前位置:  首页 > 技术文章

Plantarray植物逆境生理研究平台-植物抗逆性研究

发表时间:2021-09-09 09:11:12点击:1247

来源:北京博普特科技有限公司

分享:

Plantarray是一款基于称重的高通量、多传感器生理表型平台以及植物逆境生物学研究通用平台。该系统可持续、实时测量位于不同环境条件下、阵列中每个植株的土壤-植物-空气(SPAC)中的即时水流动。直接测量根系和茎叶系统水平衡和生物量增加,计算植物生理参数以及植物对动态环境的反馈。系统以有效、易用、无损的方式针对植物对不同处理的反应、预测植物生长和生产力进行定量比较,广泛应用于生物胁迫和非生物胁迫以及植物栽培加速育种研究等,胁迫研究涵盖干旱胁迫、盐胁迫、重金属胁迫、热、冷胁迫、光胁迫以及灌溉/养分、CO2指示、植物健康等领域的研究。

1653444497713945.jpg

Plantarray高通量植物生理表型平台

作为一种抗逆特性的植物不等水行为

水资源短缺是农业系统的一个关键限制。植物中已经发展出两种不同的水管理策略:等水策略和非等水策略。当水分充足时以及在干旱条件下,等水植物通过减少气孔导度以限制蒸腾作用来保持恒定的正午叶水势(ψleaf)。不等水植物具有更多可变的ψleaf,即使在叶水势下降的情况下,它们的气孔和光合速率也能保持较高的较长时间。当水分充足时以及在适当胁迫条件下,不等水植物的这种冒险行为可能是有益的。然而在严重干旱的情况下,这种行为可能会危及植物。我们将讨论这两种用水策略的优缺点及其对植物耐受非生物和生物胁迫能力的影响。还将讨论植物液泡膜AQP在此过程中的参与。

image.png

图1.Tom-SlTIP2的正午叶水势(ψleaf)和叶片相对含水量(RWC)的比较

等水与非等水行为的定义应包括植物相对含水量 (RWC) 的调节。等水植物典型稳定的 ψleaf会维持高水平的RWC。本文预计等水植物比ψleaf更严格地调节RWC。为了检验这一假设,本文监测了的非等水番茄TIP2;2植株的RWC和ψleaf,以及当植物暴露于干旱胁迫时的相应等水对照。我们观察到等水植物比它们的ψleaf更严格地保持它们的RWC(图 1)。调节这种层次结构的机制尚不清楚。细胞壁弹性 (ε) 可能会起到作用。具有高ε的植物对水分流失更敏感,并将最小的RWC损失转化为最大的ψleaf变化。ε可能在感知水分损失信号并将其转化为水势信号方面发挥中心作用,水势信号可由气孔感知,从而导致其关闭(即ε越高的细胞壁对含水量差异的微小变化越敏感,从而导致气孔更迅速关闭)。此外ε可以维持膨胀损失点的相对含水量,防止细胞脱水。

image.png

图2.用坏死性真菌灰霉菌接种分离的叶子

不等水行为与生物胁迫抗性之间关联的另一个例子可以AB缺乏的番茄突变体中看到。该突变体可被视为最终的不等水植物,因为它始终保持较高的气孔导度。据报道这些植物对坏死性真菌灰霉病具有高度抗性。然而有人认为这种抗性可能与碳水化合物平衡无关,而是这些突变体中水杨酸的相对水平(可能是对低水平ABA的反馈反应,因为水杨酸是ABA37的拮抗剂,已知在植物对生物胁迫的抗性中发挥作用)较高。当异水TIP2;2植株接种灰霉菌时,它们表现出比等水对照植株更高的抗病性(图2)。此外TIP2;2植物也比对照更耐受番茄黄叶卷曲病毒。这些结果支持了不等水植物可能更耐受生物胁迫,但我们仍然不了解这种耐受性的机制。已经表明等水物种比非等水物种具有更高水平的ABA。这表明对生物胁迫的非等水抗性可能与ABA水杨酸调节的植物防御机制有关。

需要更多的研究来增加我们对植物用来调节水分平衡的不同策略的分子基础的理解。鉴定在植物水分预算活动中具有明确作用的特定AQP 基因将增强我们对气孔调节的理解,并为提高植物对许多其他类型的非生物甚至生物胁迫的抗性提供新的分子工具,从而促进未来的食物、饲料和纤维安全。重要的是,任何关于作物对胁迫的行为相关抗性或耐受性的声明都要考虑胁迫水平、暴露于胁迫的持续时间以及植物从这种暴露中恢复的速度。

相关阅读

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-烟草研究

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究2

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究3

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究4

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究5

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-西红柿研究6

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-拟南芥研究1

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--拟南芥研究2

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台林木研究-黑松研究

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台林木研究-杨树研究

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台林木研究-柑橘研究

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-辣椒研究2

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-辣椒研究3

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台-辣椒研究4

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台作物研究-大麦研究2


  • 土壤仪器品牌德国steps
  • 土壤仪器品牌奥地利PESSL
  • 土壤仪器品牌荷兰MACView
  • 土壤仪器品牌德国INNO_Concept
  • 土壤仪器品牌比利时WIWAM
  • 土壤仪器品牌德国GEFOMA
  • 土壤仪器品牌奥地利schaller
  • 土壤仪器品牌荷兰PhenoVation
  • 土壤仪器品牌法国Hi-phen系统
  • 土壤仪器品牌Videometer
  • 土壤仪器品牌比利时INDUCT(OCTINION)
  • 土壤仪器品牌美国EGC
  • 土壤仪器品牌HAIP
  • 土壤仪器品牌植物遗传资源学报